Skip to main content

Assay List

The Center for Human Toxicology has long provided analytical services to other investigators

A list of methods we have used in the past is provided in the table below.  Some of these have been used recently and can be “geared up” for use in fairly short time.  Others may not have been used for some time, and may require a bit of time and effort to put back on-line.  The Center is also glad to discuss development of new methods suitable for your research projects.  Method development can, however, be a long and not inexpensive project.  Think of it as the energy of activation that must be overcome to provide proper bioanalytical services.  Center Directors will be glad to discuss your bioanalytical needs and what resources might be required to meet these needs.  We are more than willing to work others on applications for funding to seek needed resources.
cop

Drugs and Metabolites that CHT Has Quantitatively Analyzed by MS

 

Published Assays   Unpublished Assays
Analytes References   Analytes
Acetaminophen protein adduct  [1]  
Acetaminophen protein adduct  [1]  
Acetylmethadol (LAAM) & metabolites [234] Alfentanil
Alprazolam & hydroxyalprazolam  [567 Amitriptyline
Amphetamine & p-hydroxyamphetamine [89 Anidulafungin
Androgenic steroids, estradiol & 1-AD  [10]   Carfentanil
Aripiprazole   [11] Desipramine
Beclomethasone (inhaled glucocorticoids) [1213] Desmethyldoxepin
Bisphenol A  [14] Diazepam & nordiazepam
Buprenorphine & metabolites  [151617] Dimethoxymethylamphetamine
Caffeine & metabolites  [181920 Doxepin
Capsaicin, nonivamide & dihydyrocapsaicin  [21] Fenfluramine
Cocaine & metabolites [22232425262728  
Codeine & metabolites  [29 Flurazepam & metabolites
Cyclophosphamide & ifosfamide   [30]    Imipramine
Dimitrophenylhydrazine aldehyde conjugates  [31 Meprobamate & carisoprodol
Fentanyl & norfentanyl [32] Mescaline
Gamma-hydroxybutyrate  [33] Methaqualone
Ibogaine & noribogaine    [34]    Midazolam
Lorazepam  [35]    Nortriptyline
Lysergic acid diethylamide & metabolites  [363738]   Phenobarbital
Methadone & metabolites [394041]   Phenylbutazone
Methamphetamine & amphetamine  [42] Propoxyphene
Methylenedioxymethamphetamine & metabolites   [43] Secobarbital
Methylphenidate   [44 Tetrahydrocannabivarin
Morphine & glucuronide metabolites  [45] Triazolam & -OH-triazolam
Nalmefene [46]    
Naloxone & nornaloxone  [47]    
Naltrexone & 6ß-naltrexol   [484950  
Nandrolone and testosterone  [51]    
Nicotine & metabolites   [525354]  
19-Norandrosterone  [55]  
Oxandrolone  [56]  
Oxycodone & metabolites     [57]  
Phencyclidine [58]  
Quetiapine [59]  
Remifentanil  [60]  
Riboflavin (a compliance marker) [61]  
Risperidone & 9-hydroxyrisperidone  [62]  
Selegiline & metabolites   [42]  
Serotonin & related indoles   [63]  
Stanozolol [64]  
Testosterone & epitestosterone   [65]  
9-Tetrahydrocannabinol & metabolites    [66676869]  
Tobramycin    [70]  

        

 

Publications

  

[1]       M.R. McGill, M. Lebofsky, H.R. Norris, M.H. Slawson, M.L. Bajt, Y. Xie, C.D. Williams, D.G. Wilkins, D.E. Rollins, H. Jaeschke, Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: dose-response, mechanisms, and clinical implications. Toxicology and applied pharmacology 269 (2013) 240-249.

[2]       W. Huang, P.A. Bemis, M.H. Slawson, D.E. Moody, Determination of l-a-acetylmethadol (LAAM), norLAAM, and dinorLAAM in clinical and in vitro samples using liquid chromatography with electrospray ionization and tandem mass spectrometry. J. Pharm. Sci. 92 (2003) 10-20.

[3]       D.E. Moody, D.J. Crouch, C.O. Sakashita, M.E. Alburges, K. Minear, J.E. Schulthies, R.L. Foltz, A gas chromatographic-positive ion chemical ionization-mass spectrometric method for determination of l-a-acetylmethadol (LAAM), norLAAM, and dinorLAAM in plasma, urine, and tissue. J. Anal. Toxicol. 19 (1995) 343-351.

[4]       D.G. Wilkins, A.S. Valdez, G.J. Krueger, D.E. Rollins, Quantitative analysis of l-a-acetylmethadol, l-a-acetyl-N-normethadol, and l-a-acetyl-N,N-dinormethadol in human hair by positive-ion chemical ionization mass spectrometry. J. Anal. Toxicol. 21 (1997) 420-426.

[5]       K. Hold, D.J. Crouch, D.E. Rollins, D.G. Wilkins, D. Canfield, R. Maes, Quantitation of alprazolam and alpha-hydroxyalprazolam in human plasma by negative-ion chemical ionization GC/MS. J. Mass Spectrom. 31 (1996) 1033-1038.

[6]       K. Hold, D.J. Crouch, D.G. Wilkins, D.E. Rollins, R. Maes, Detection of alprazolam in hair by negative-ion chemical ionization mass spectrometry. For. Sci. Int. 84 (1997) 201-209.

[7]       D.J. Crouch, D.E. Rollins, D.V. Canfield, D.A. Andrenyak, J.E. Schulties, Quantitation of alprazolam and a-hydroxyalprazolam in human plasma using liquid chromatography electrospray ionization MS-MS. J. Anal. Toxicol. 23 (1999) 479-485.

[8]       D.E. Moody, W. Ruangyuttikarn, M.Y. Law, Quinidine inhibits in vivo metabolism of amphetamine in rats: impact upon correlation between GC/MS and immunoassay findings in rat urine. J. Anal. Toxicol. 14 (1990) 311-317.

[9]       M.Y.L. Law, D.E. Moody, Simultaneous quantitation of amphetamine and 4'-hydroxyamphetamine by high performance liquid chromatography. Journal of Liquid Chromatography 18 (1995) 2029-2043.

[10]     C.A. Reilly, D.J. Crouch, Analysis of the nutritional supplement 1AD, its metabolites, and related endogenous hormones in biological matrices using liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 28 (2004) 1-10.

[11]     S.N. Lin, L. Lamm, T.F. Newton, M.S. Reid, D.E. Moody, R.L. Foltz, A liquid chromatography-electrospray ionization-tandem mass spectrometry method for quantitation of aripiprazole in human plasma. J. Anal. Toxicol. 33 (2009) 237-242.

[12]     C.D. Moore, J.K. Roberts, C.R. Orton, T. Murai, T.P. Fidler, C.A. Reilly, R.M. Ward, G.S. Yost, Metabolic pathways of inhaled glucocorticoids by the CYP3A enzymes. Drug metabolism and disposition: the biological fate of chemicals 41 (2013) 379-389.

[13]     J.K. Roberts, C.D. Moore, R.M. Ward, G.S. Yost, C.A. Reilly, Metabolism of beclomethasone dipropionate by cytochrome P450 3A enzymes. The Journal of pharmacology and experimental therapeutics 345 (2013) 308-316.

[14]     D.J. Anderson, E.M. Brozek, K.J. Cox, C.A. Porucznik, D.G. Wilkins, Biomonitoring method for bisphenol A in human urine by ultra-high-performance liquid chromatography-tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 953-954 (2014) 53-61.

[15]     D.E. Moody, M.H. Slawson, E.C. Strain, J.D. Laycock, A.C. Spanbauer, R.L. Foltz, A liquid chromatographic-electrospray ionization-tandem mass spectrometric method for determination of buprenorphine, its metabolite, norbuprenorphine, and a co-formulant, naloxone, that is suitable for in vivo and in vitro metabolism studies. Anal. Biochem. 306 (2002) 31-39.

[16]     D.E. Moody, J.D. Laycock, A.C. Spanbauer, D.J. Crouch, R.L. Foltz, J.L. Josephs, L. Amass, W.K. Bickel, Determination of buprenorphine in human plasma by gas chromatography-positive ion chemical ionization mass spectrometry and liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 21 (1997) 406-414.

[17]     W. Huang, D.E. Moody, E.F. McCance-Katz, The in vivo glucuronidation of buprenorphine and norbuprenorphine determined by liquid chromatography-electrospray ionization-tandem mass spectrometry. Ther. Drug Monit. 28 (2006) 245-251.

[18]     M. Klebanoff, R. Levine, R. DerSimonian, J. Clemens, D.G. Wilkins, Serum caffeine and paraxanthine as markers for reported caffeine intake in pregnancy. Ann. Epidemiol. 8 (1998) 107-111.

[19]     M. Klebanoff, R. Levine, R. DerSimonian, J. Clemens, D.G. Wilkins, Maternal serum paraxanthine, a caffeine metabolite, and the risk of spontaneous abortion. N. Engl. J. Med. 341 (1999) 1639-1644.

[20]     M. Klebanoff, R. Levine, J. Clemens, D.G. Wilkins, Maternal serum caffeine metabolites and small-for-gestational-age birth. Am. J. Epidemiol. 155 (2002) 32-37.

[21]     C.A. Reilly, D.J. Crouch, G.S. Yost, A.A. Fatah, Determination of capsaicin, nonivamide, and dihydrocapsaicin in blood and tissue by liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 26 (2002) 313-319.

[22]     J.Y. Zhang, R.L. Foltz, Cocaine metabolism in man: identification of four previously unreported cocaine metabolites in human urine. J. Anal. Toxicol. 14 (1990) 201-205.

[23]     D.J. Crouch, M.E. Alburges, A.C. Spanbauer, D.E. Rollins, D.E. Moody, A.A. Chasin, Analysis of cocaine and its metabolites from biological specimens using solid-phase extraction and positive ion chemical ionization mass spectrometry. J. Anal. Toxicol. 19 (1995) 352-358.

[24]     A.C. Spanbauer, D.E. Moody, R.L. Foltz, S.L. Walsh, A gas chromatographic-positive ion chemical ionization-mass spectrometric method for determination of cocaine, benzoylecgonine, ecgonine methyl ester, and norcocaine in plasma: Detection of norcocaine in plasma after oral administration of cocaine. J. Anal. Toxicol. 24 (2000) 453-455.

[25]     S.-N. Lin, D.E. Moody, G.E. Bigelow, R.L. Foltz, A validated liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry method for quantitation of cocaine and benzoylecgonine in human plasma. J. Anal. Toxicol. 25 (2001) 497-503.

[26]     R.B. Paulsen, D.G. Wilkins, M.H. Slawson, K. Shaw, D.E. Rollins, Effect of four laboratory decontamination procedures on the quantitative determination of cocaine and metabolites in hair by HPLC-MS. J. Anal. Toxicol. 25 (2001) 490-496.

[27]     S.N. Lin, S.L. Walsh, D.E. Moody, R.L. Foltz, Detection and time course of cocaine N-oxide and other cocaine metabolites in human plasma by liquid chromatography/tandem mass spectrometry. Anal. Chem. 75 (2003) 4335-4340.

[28]     D.E. Moody, A.C. Spanbauer, J.L. Taccogno, E.K. Smith, Comparative analysis of sweat patches for cocaine (and metabolites) by radioimmunoassay and gas chromatography-positive ion chemical ionization-mass spectrometry. J. Anal. Toxicol. 28 (2004) 86-93.

[29]     D.G. Wilkins, D.E. Rollins, J. Seaman, H. Haughey, G.G. Krueger, R.L. Foltz, Quantitative determination of codeine and its major metabolites in human hair by gas chromatography/positive ion chemical ionization mass spectrometry: a clinical application. J. Anal. Toxicol. 19 (1995) 269-274.

[30]     C. Wick, M.H. Slawson, J.A. Jorgenson, L.S. Tyler, Using a closed-system protective device to redue personnel exposure to antineoplastic agents. Am. J. Health-Syst. Pharm. 60 (2003) 2314-2320.

[31]     D. Shapiro, C.E. Deering-Rice, E.G. Romero, R.W. Hughen, A.R. Light, J.M. Veranth, C.A. Reilly, Activation of transient receptor potential ankyrin-1 (TRPA1) in lung cells by wood smoke particulate material. Chem Res Toxicol 26 (2013) 750-758.

[32]     J.E. Day, M.H. Slawson, R.A. Lugo, D. Wilkins, Analysis of fentanyl and norfentanyl in human plasma by liquid chromatography-tandem mass spectrometry using electrospray ionization. J. Anal. Toxicol. 27 (2003) 513-516.

[33]     M. Chen, D.M. Andrenyak, D.E. Moody, R.L. Foltz, Stability of plasma gamma-hydroxybutyrate determined by gas chromatography-positive ion chemical ionization-mass spectrometry. J. Anal. Toxicol. 27 (2003) 445-448.

[34]     M.E. Alburges, R.L. Foltz, D.E. Moody, Determination of ibogaine and 12-hydroxy-ibogamine in plasma by gas chromatography-positive ion chemical ionization-mass spectrometry. J. Anal. Toxicol. 19 (1995) 381-386.

[35]     K. Dominguez, M. Crowley, D. Coleman, R. Katz, D.G. Wilkins, H. Kelly, Withdrawal from lorazepam in critically ill children. Ann. Pharmacother. 40 (2006) 1035-1039.

[36]     P. Francom, H.K. Lim, D. Andrenyak, R.T. Jones, R.L. Foltz, Determination of LSD in urine by capillary column gas chromatography and electron impact mass spectrometry. J. Anal. Toxicol. 12 (1988) 1-8.

[37]     H.K. Lim, D. Andrenyak, P. Francom, R.T. Jones, R.L. Foltz, Quantification of LSD and N-demethyl LSD in urine by gas chromatography/resonance electron capture ionization mass spectrometry. Anal. Chem. 60 (1988) 1420-1425.

[38]     D.I. Papac, R.L. Foltz, Measurement of lysergic acid diethylamide (LSD) in human plasma by gas chromatography/negative ion chemical ionization mass spectrometry. J. Anal. Toxicol. 14 (1990) 189-190.

[39]     D.E. Moody, S.N. Lin, Y. Chang, L. Lamm, M.K. Greenwald, M.S. Ahmed, An enantiomer selective liquid chromatography-tandem mass spectrometry method for methadone and EDDP validated for use in human plasma, urine and liver microsomes. J. Anal. Toxicol. 32 (2008) 208-219.

[40]     M.E. Alburges, W. Huang, R.L. Foltz, D.E. Moody, Determination of methadone and its N-demethylation metabolites in biological specimens by gas chromatography/positive ion chemical ionization-mass spectrometry. J. Anal. Toxicol. 20 (1996) 362-368.

[41]     D.G. Wilkins, P.R. Nagasawa, S.P. Gygi, R.L. Foltz, D.E. Rollins, Quantitative analysis of methadone and two major metabolites in hair by positive chemical ionization ion trap mass spectrometry. J. Anal. Toxicol. 20 (1996) 355-361.

[42]     M.H. Slawson, J.L. Taccogno, R.L. Foltz, D.E. Moody, Quantitative analysis of selegiline and three metabolites (N-desmethylselegiline, methamphetamine, and amphetamine) in human plasma by high-performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. J. Anal. Toxicol. 26 (2002) 430-437.

[43]     H.K. Lim, Z. Su, R.L. Foltz, Stereoselective disposition - enantioselective quantitation of 3,4-(methylenedioxy)methamphetamine and 3 of its metabolites by gas chromatography/electron capture negative ion chemical ionization mass spectrometry. Biol. Mass Spectrom. 22 (1993) 403-411.

[44]     S.-N. Lin, D.M. Andrenyak, D.E. Moody, R.L. Foltz, Enantioselective gas chromatography-negative ion chemical ionization mass spectrometry for methylphenidate in human plasma. J. Anal. Toxicol. 23 (1999) 524-530.

[45]     M.H. Slawson, D.J. Crouch, D.M. Andrenyak, D.E. Rollins, J.K. Lu, P.L. Bailey, Determination of morphine, morphine-3-glucuronide, and morphine-6-glucuronide in plasma after intravenous and intrathecal morphine administration using HPLC with electrospray ionization and tandem mass spectrometry. J. Anal. Toxicol. 23 (1999) 468-473.

[46]     W.B. Fang, D.M. Andrenyak, D.E. Moody, E.S. Nuwayser, Determination of nalmefene by high-performance liquid chromatography-electrospray ionization-tanden mass spectrometry. J. Anal. Toxicol. 29 (2005) 169-174.

[47]     W.B. Fang, Y. Chang, E.F. McCance-Katz, D.E. Moody, Determination of naloxone and nornaloxone (noroxymorphone) by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. J. Anal. Toxicol. 33 (2009) 409-417.

[48]     K.M. Monti, R.L. Foltz, D.M. Chinn, Analysis of naltrexone and 6-ß-naltrexol in plasma and urine by gas chromatography/negative ion chemical ionization mass spectrometry. J. Anal. Toxicol. 15 (1991) 136-140.

[49]     W. Huang, D.E. Moody, R.L. Foltz, S.L. Walsh, Determination of naltrexone and 6ß-naltrexol in plasma by solid phase extraction and gas chromatography-negative ion chemical ionization-mass spectrometry. J. Anal. Toxicol. 21 (1997) 252-257.

[50]     M.H. Slawson, M. Chen, D.E. Moody, S.D. Comer, E.S. Nuwayser, W.B. Fang, R.L. Foltz, Quantitative analysis of naltrexone and 6ß-naltrexol in human, rat and rabbit plasma by liquid chromatography-electrospray ionization tandem mass spectrometry with application to the pharmacokinetics of Depotrex in rabbits. J. Anal. Toxicol. 31 (2007) 453-461.

[51]     K.M. Hold, C. Borges, D.G. Wilkins, D.E. Rollins, R. Joseph, Detection of nandrolone, testosterone and their esters in human and rat hair samples. J. Anal. Toxicol. 23 (1999) 416-423.

[52]     E.I. Miller, H.R. Norris, D.E. Rollins, S.T. Tiffany, C.M. Moore, M.J. Vincent, A. Agrawal, D.G. Wilkins, Identification and quantification of nicotine biomarkers in human oral fluid from individuals receiving low-dose transdermal nicotine: A preliminary study. J. Anal. Toxicol. 34 (2010) 357-366.

[53]     E.I. Miller, H.R. Norris, D.E. Rollins, S.T. Tiffany, D.G. Wilkins, A novel validated method for determination of nicotine, eight nicotine metabolites and two minor tobacco alkaloids  in human plasma and urine by solid-phase extraction coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry. J. Chromatogr. B 878 (2010) 725-737.

[54]     P.L. Vieira-Brock, E.I. Miller, S.M. Nielsen, A.E. Fleckenstein, D.G. Wilkins, Simultaneous quantification of nicotine and metabolites in rat brain by liquid chromatography-tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 879 (2011) 3465-3474.

[55]     C.R. Borges, N. Miller, M. Shelby, M. Hansen, C. White, M.H. Slawson, K.M. Monti, D.J. Crouch, Analysis of a challenging subset of World Anti-Doping Agency-banned steroids and antiestrogens by LC-MS-MS. J. Anal. Toxicol. 31 (2007) 125-131.

[56]     M.W. Linakis, C. Stockmann, S.C. Campbell, R.V. Williams, P.T. Burch, L.M. Lambert, C.M. Sherwin, C.A. Reilly, M.G. Spigarelli, Quantitative Assay Validation for Oxandrolone in Human Plasma Using LC-MS-MS. J Anal Toxicol 39 (2015) 526-531.

[57]     W.B. Fang, M.R. Lofwall, S.L. Walsh, D.E. Moody, Determination of oxycodone, noroxycodone and oxymorphone by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry in human matrices: in vivo and in vitro applications. J Anal Toxicol 37 (2013) 337-344.

[58]     M.H. Slawson, D.G. Wilkins, R.L. Foltz, D.E. Rollins, Quantitative determination of phencyclidine in pigmented and nonpigmented hair by ion trap mass spectrometry. J. Anal. Toxicol. 20 (1996) 350-354.

[59]     S.-N. Lin, Y. Chang, D.E. Moody, R.L. Foltz, A liquid chromatographic-electrospray-tandem mass spectrometric method for quantitation of quetiapine in human plasma and liver microsomes: application to a study of in vitro metabolism. J. Anal. Toxicol. 28 (2004) 443-448.

[60]     T.S. Bevans, C.E. Deering-Rice, C. Stockmann, A.R. Light, C.A. Reilly, D. Sakata, Inhaled remifentanil in rodents. Anesthesia and Analgesia (2016) (in press).

[61]     M. Chen, D.M. Andrenyak, D.E. Moody, R.L. Foltz, Determination of riboflavin by high-performance liquid chromatography with riboflavin-depleted urine as calibration and control matrix. J. Chromatogr. B 820 (2005) 147-150.

[62]     D.E. Moody, J.D. Laycock, W. Huang, R.L. Foltz, A high-performance liquid chromatographic-atmospheric pressure chemical ionization-tandem mass spectrometric method for determination of risperidone and 9-hydroxyrisperidone in human plasma. J. Anal. Toxicol. 28 (2004) 494-497.

[63]     J.P. Danaceau, G.M. Anderson, W.M. McMahon, D.J. Crouch, A liquid chromatographic-tandem mass spectrometric method for the analysis of serotonin and related indoles in human whole blood. J. Anal. Toxicol. 27 (2003) 440-444.

[64]     K.M. Hold, D.G. Wilkins, D.J. Crouch, D.E. Rollins, R.A. Maes, Detection of stanozolol in hair by negative ion chemical ionization mass spectrometry. J. Anal. Toxicol. 20 (1996) 345-349.

[65]     J.P. Danaceau, M.S. Morrison, M.H. Slawson, Quantitative confirmation of testosterone and epitestosterone in human urine by LC/Q-ToF mass spectrometry for doping control. J. Mass Spectrom. 43 (2008) 993-1000.

[66]     R.L. Foltz, K.M. McGinnis, D.M. Chinn, Quantitative measurement of ∆9-tetrahydrocannabinol and two major metabolites in physiological specimens using capillary column gas chromatography negative ion chemical ionization mass spectrometry. Biomed. Mass Spectrom. 10 (1983) 316-323.

[67]     D.G. Wilkins, H. Haughey, E. Cone, M. Huestis, R.L. Foltz, D.E. Rollins, Quantitative analysis of THC, 11-OH-THC, and THC-COOH in human hair by negative ion chemical ionization mass spectrometry. J. Anal. Toxicol. 19 (1995) 483-491.

[68]     W. Huang, D.E. Moody, D.M. Andrenyak, E.K. Smith, R.L. Foltz, M.A. Huestis, J.F. Newton, Simultaneous determination of∆9-tetrahydrocannabinol and 11-nor-9-Carboxy-∆9-tetrahydrocannabinol in human plasma by solid-phase extraction and gas chromatography-negative ion chemical ionization-mass spectrometry. J. Anal. Toxicol. 25 (2001) 531-537.

[69]     O. Quintela, D.M. Andrenyak, A.M. Hoggan, D.J. Crouch, A validated method for the detection of ∆9-tetrahydrocannabinol and 11-nor-9-carboxy-∆9-tetrahydrocannabinol in oral fluid samples by liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J. Anal. Toxicol. 31 (2007) 157-164.

[70]     J.O. Sevy, M.H. Slawson, D.W. Grainger, A.E. Brooks, Asay method for polymer-controlled antibiotic release from allograph bone to target orthopaedic infections - biomed 2010. Biomed. Sci. Instrum. 46 (2010) 136-141.